Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(9): 193, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606787

RESUMO

KEY MESSAGE: Thirty-three stable QTL for 13 yield-related traits across ten environments were identified in the PD34/MY47 RIL population, and a candidate gene TaGS5-3D in Qmt.nwafu.3D was preliminarily identified to affect grain-related traits through accumulation of specific transcripts. Dissecting the genetic basis of yield-related traits is pivotal for improvement of wheat yield potential. In this study, a recombinant inbred line (RIL) population genotyped by SNP markers was used to detect quantitative trait loci (QTL) related to yield-related traits in ten environments. A total of 102 QTL were detected, including 33 environmentally stable QTL and 69 putative QTL. Among them, Qmt.nwafu.3D was identified as a pleiotropic QTL in the physical interval of 149.77-154.11 Mb containing a potential candidate gene TaGS5-3D. An SNP (T > C) was detected in its ninth intron, and TaGS5-3D-C was validated as a superior allele associated with larger grains using a CAPS marker. Interestingly, we found that TaGS5-3D-C was closely related to significantly up-regulated expression of intron-retained transcript (TaGS5-3D-PD34.1), while TaGS5-3D-T was related to dominant expression of normal splicing transcript (TaGS5-3D-MY47.1). Our results indicated that alternative splicing associated with the SNP T/C could be involved in the regulation of grain-related traits, laying a foundation for the functional analysis of TaGS5-3D and its greater potential application in high-yield wheat breeding.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Íntrons , Alelos , Grão Comestível/genética , Nucleotídeos
2.
Plant Sci ; 323: 111392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868348

RESUMO

Improving yield potential is a major goal of wheat breeding that depends on identifying key genetic loci. In this study, two residual heterozygous line RHL351- and RHL78-derived populations were employed for genetic linkage map construction and QTL detection. Two genetic populations indicated a robust grain-size QTL between Marker6 and Marker10. It covered a 95.54-99.38 Mb physical interval and was named Qpleio.nwafu.3D, containing the candidate gene Tasg (TraesCS3D02G137200). Intriguingly, RNA-seq analysis and sequencing revealed two different allelic variants in Tasg, named Tasg-D1 (G>A) and Tasg-D2 (C>G), respectively. Although the relationship between Tasg-D1 and grain size had been demonstrated previously, here we provided the first genetic evidence that C/G allelic variation in Tasg-D2 was associated with grain shape and size through a newly developed dCAPS marker. In addition, transcriptome comparison indicated that Tasg-D1/2 might primarily contribute to significant expression differences in brassinolide (BR) metabolism-related genes rather than those related to BR responses in developing grains and spikes. Our study provided new evidence and a breeder-friendly dCAPS marker for improving grain size through the selection of Tasg, as well as a basis to understand Tasg function in the future.


Assuntos
Locos de Características Quantitativas , Triticum , Brassinosteroides , Mapeamento Cromossômico , Grão Comestível/genética , Ligação Genética , Pleiotropia Genética , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Esteroides Heterocíclicos , Triticum/genética
3.
PLoS One ; 15(8): e0237536, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790719

RESUMO

Melatonin is effective in enhancing various abiotic stress resistances of plants. However, its underlying mechanisms in drought-resistance in winter wheat (Triticum aestivum L.) is not clear. The goal of this work was to investigate the effect of melatonin on seed germination and to evaluate leaf antioxidant physiology for two wheat varieties. Experiments included 20% PEG, melatonin plus 20% PEG and a control using two contrasting wheat varieties (JM22- drought sensitive and HG35- drought resistant). Melatonin levels were 0, 1, 10, 100 and 300 µmol L-1. Results revealed that 300 µmol L-1 of melatonin alleviated the negative effect of water stress on germination and increased radicle length, radicle number, and plumule length of the germinated seeds. Principal component analysis showed a significant change in amino acid content during germination and this change was dependent on melatonin concentration and the variety. Lysine (Lys) content in wheat seeds under the PEG plus 300 µmol L-1 melatonin treatment increased compared with that of the seeds under PEG alone. There was a significant and positive correlation between Lys content and morphological index of germination. During seedling growth, soluble protein was involved in osmotic adjustment and superoxide dismutase (SOD) activity was increased to mitigate the damage in the cytomembrane of JM 22 leaf under 300 µmol L-1 melatonin plus PEG treatment. The effect of melatonin was dependent on SOD activity increasing significantly for HG35-a drought resistant variety. The results of this work lays a foundation for further studies to determine if melatonin can be economically used to mitigate the impact of dry planting conditions on wheat productivity in North China Plain.


Assuntos
Antioxidantes/farmacologia , Germinação/efeitos dos fármacos , Melatonina/farmacologia , Polietilenoglicóis/toxicidade , Sementes/efeitos dos fármacos , Estresse Fisiológico , Triticum/efeitos dos fármacos , Secas , Osmose , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...